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The axisymmetric probl,~m of the annular crack that occurs at the interface of an elastic layer bonded to an elastic half-space of 
a different material when a normal load, distributed around a circular region, is applied to the surface of such a two-layer body 
is investigated. To solve the system of integral equations for the sudden changes in the components of the displacement vector 
in the crack zone, the regular asymptotic method [1] is used, which is effective for a fairly narrow annular crack. After the system 
of equations has been solved, to determine the true dimensions of the crack it is suggested that Novozhilov's integral criterion 
of fracture [2] be used. ,~ 2000 Elsevier Science Ltd. All rights reserved. 

Problems of annular defects of the crack or inclusion type in a plane where the elastic properties of 
the materials change [3, 4], and also similar plane problems, have been investigated earlier, for example 
in [5]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  I T S  R E D U C T I O N  
T O  A S Y S T E M  O F  T W O  I N T E G R A L  E Q U A T I O N S  

Consider an elastic body consisting of a layer of thickness h with elastic characteristics Gt (shear modulus) 
and vt (Poisson's ratio) bonded to a half-space with characteristics Gz and ~ .  Under conditions of axial 
symmetry, we will use cylindrical coordinates r, q~, z. Suppose a normal load of intensity q(r), distributed 
around a circle of radius c, is applied to the boundary of the layer z = h. Outside this circle, the body 
surface is assumed to be unloaded. We will assume that, under the action of the applied normal load 
in the plane z = 0 in which the elastic properties change, because of inadequate adhesion between the 
layer (coating) and the half-space (substrate), an annular crack a ~< r ~< b is formed (note that an annular 
crack could be formed under the action of an annular load). The normal and radial displacements are 
interrupted at the crack. Assuming firstly that the values of a and b are known, we will obtain a system 
of integral equations for the sudden changes in displacements at the crack. 

We will write the boundary conditions of the problem in the following form (superscript 1 corresponds 
to the layer, and superscript 2 to the half-space) 

z = h :  ot_,)=_q(r)(r<~c), ~('). = 0 ( r > c ) ;  ~-(I)=0,.: 

z = 0" ul. jl -u(,. 2) = u( r ) ( r  ~ (a,b)); tt[ j) - u! 2). = w(r)(r c (a ,b) )  

ul. I) = ttl. 2) (r ~ (a,b)); n! t) = u(: 2) (r ~ (a,b)) 

o(i)_ = or_z);, xo),_ =x(z~.,.: , ~[I)=~(t~_r: = 0(," ~ (a b)) 

(1.1) 

Furthermore as z --> - ~ ,  the displacements and stresses disappear. To solve boundary-value problem 
(1.1), we will use four Papkovich-Neuber functions apm(r, z) (n, m = 1, 2): two for the layer (superscript 
1) and two for the half-space (superscript 2). The displacements and stresses are expressed in terms of 
these functions by :means of formulae (59.3) in [6]. 
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Assuming that 

(:l)ll (r. Z) = ~[A shLz + Bch ~.zlJo(Xr)d~ 
0 

gP~(r, z) = ~[Csh~z + Och 2LzlJ0 (~.r)LarA (1.2) 
0 

#Pl (r,z) = ~ EeX':Jo(~.r)d~, * ~ ( r , z ) =  ~ Fe XZJo()~r))~r~ 
o 0 

(where J,(r) is the cylindrical Bessel function),  on  the basis of  the condit ions (1.1) 
(except for the last two equations) ,  for  the six unknown functions o f  the pa ramete r  h - A,  B, C, D, E 
and F - we obtain the following system of  six linear algebraic equat ions  (u = hh) 

2(I - v I )(Cch u + Dsh u ) -  Ash u - Bch u - u(Csh u + Dch  tt) = -Q  

(I - 2v I )(Csh u + Dch  u ) -  A ch u - Bsh u - u (Cch u + Dsh u) = 0 

B = E + U, (3 - 4v  I )D - A = (3 - 4v  2 ) F -  E + W (1.3) 

Gi [2(I - v I ) C -  B] = G 2 [2(! - v 2)F - E] 

G I[(! - 2v I ) D -  A] = G2[(I - 2v 2 ) F -  El 

where,  by a Hankel  t ransformat ion  we have 

! '~ 
Q = ~ ! q(P)J°(X'p)pdp 

b h 

U = I u(p)J~ (kp)pdp, W = I w(p)Jo(~p)pdp 
t/  a 

(1.4) 

The  de terminant  of  system (1.3) is a known function [7] equal (apar t  f rom an un impor tan t  factor) 
to 

A(u) = M - ( I  + 4u 2 + LM)e -2" + Le -4" (1.5) 

L = G I × 2 -  G2×1 M Gt+G2×t  , = , × i = 3 - 4 v i ,  i = 1 , 2  
Gl× 2 + G 2 Gj - G 2 

In  each specific case o f  the values o f  the constants  M and L,  it can be verified directly that the function 
A(u) ~ 0 when u >I 0. Af te r  system (1.3) has been  solved, by satisfying the remaining two conditions 
o f  (1.1), we obtain a system of  integral equat ions  in the functions u(r) and w(r) 

I, h *t+~ t h ( l -  vz) F21Ji.o(r) (1.6) Su(p)K2'tt'l(r'p)pdp+ Sw(p)K~-'At'°(r'p)pdP=(-l) G~ 
II II 

(a<~r<~b,l= l,2) 

where  the following notat ion is in t roduced 

** k 
kl l i t  u p  U 

K,,,,,(r,p)=IJ,,,(-";"]J,,(--;-]~, ,Kt(u)du 
o k n I k n } , ' q u )  

K,.(u) = A o + [A I + (2 - s)A2u + 2Azu2]e -2" - (A o + A I )e "4", s -- 1,3 

K2(u ) = B 0 +(BI + B2u2)e -2" + Bo e-4" 

I + M ( L  - 2) 
A° = 2 ' A~ -- M - L, A 2 -- 2(L - I ) ( M -  I) (1.7) 
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LM - I [2 + M 2 
B o = - - ,  B l= l  - - ,  B E = 4 - 2 ( L + M  ) 

2 2 

, - ¢ ) , ( ) ,  UF Up U 
F,,~,',(r)= J q(p)pdpJ  J,,, - , , - - ; -  ~ .  . f A u ) d u  

o o \ n y  k n jzxtu) 

,]i(u) = [2( / -  I)M - ( - I ) t L M  - i +2(M - l)u]e -u + 

+(-I)#[2(l - I)L - (-1) t LM - I - 2(L - I)u]e -3" 

2. T H E  A S Y M P T O T I C  S O L U T I O N  F O R  T H E  CASE 
OF A N A R R O W  A N N U L A R  C R A C K  

Taking into account the formulae [8] 

o i J ° ( u r / " d r = h r j i ( u r ] ' \  h } u k h J i J l ( ' ~ ' ~ ) d r = h [ 1 - J ° ( - ~ ) ]  (2.1) 

and the fact that u(a) = u(b) = w(a) = w(b) = 0, we will integrate by parts the left-hand sides of system 
r 

(1.6) with respect to the variable p and apply the operator f . . .  dr to Eq. (1.6) when I = 1 and the operator 
0 r 

-1T foo) . . . rdrwhen l  = 2. 

Further, we will tontine ourselves to the important special case when q(r) = q = const and introduce 
dimensionless notation according to the following formulae (El and E2 are unknown integration 
constants) 

~.=2 In , IX=-- ,  c, q , = - -  E ? =  E ~ =  (2.2) 
a = ~ '  01a'  ~ q.l.ta 3 

• 3 

x = ~ln r _  I, ~ = Kin --p - 1, tpl(x) = [u(r)r]'r~2 w (r)r ~ a a q.a ~ ' ~2(x) = q.a ~ 

After reduction, we will obtain the following system of equations (Ixl ~ 1) 

I I 

f ~,C~)K[_, o(~,~,)d~ K TM, x • - ~2(~) ,-, ,( ,~)a~ = 
-I -l 

- - , - ,  0., ' +  ;-jj (2.3) 

the kernels and functions on the right-hand side of which have the form 

2+x+~VK,(u).¢u l + x L ( u  J+~).  (2.4) 

l + x "  f/(u) u l + x  /';l,(x) =-I ' t  e x p ~  J"-/";-"T,, J , , , ( - -exp-7--~l (uc*)du 
z~. 0uatu)  k~t ~ ) 

To solve system (2.3), (2.4) we will apply the asymptotic "large h" method [1], which is effective for 
a fairly narrow annular crack and a relatively thick elastic layer (h > b). By separating out  the principal 
parts when  u ~ oo in the symbols of  kernels (2.4) according to the formulae 

K.,.(u) _ ,40 + L,(u), s = 1, 3; K2 (u) = B 0 + L2 " (u) (2.5) 
A(u) M " A(u) M 

we can represent the functions Kkmn(X, ~) of the form (2.4) as a combination of series in powers of the 
parameter  h -1. Expansions corresponding to the first term on the right-hand side of the first formula 
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of (2.5) are obtained by means of expansions for the functions l(t) ([9, pp. 17-19]) and ll(t) ([9, p. 99]) 
and converge when h > 2/w. The expansion corresponding to the first term on the right-hand side of 
the second formula of (2.5) is found using the integral [8] 

{ ~Jo(ur)Jl(UP) du = p - l ,  p> r 

0 0, p < r  

and converges for any h. It can be shown that expansions in Maclaurin series containing the functions 
Lk(U) ~ exp( -2u) (u  --+ ~)(k = 1, 2, 3) converge when Ix > 1 and h > 2/ln Ix, that is, when h > b. 

We will seek the pair of functions q~j(x)(l = 1, 2) in the form 

q)t(x) = ~ ~-"' In" L~o;''(x) (2.6) 
Hl.n=O 

By virtue of the above estimates, series (2.6), as can be shown [9-11], are at least asymptotic within the 
region ~ = {~ > 1, h > max (2/'rr, 2/ln Ix)} in the Ix, h plane. 

Introducing expansions of the kernels K ~ ( x ,  0 and representation (2.6) into Eqs (2.3), expanding 
1 m n the right-hand sides of Eqs (2.3) in powers of h - ,  and equating terms with like factors h-  In h, we 

obtain a chain of successively solvable systems of equations 

= (Ixl  l, l =  !,2) (2.7) 

Here 

1 
E =  B° , P,"" = j ¢;'"(x)dx 

Ao -l 

a ~  = 2(2 - l) + O, 07944 + rcM I ~ t - t  (u)J~-z du 
gAo o 

Coo -- I + ~(U)Jo Ji 
P- o o t ,g )  ~,g) 

and the functions f~nn(x)(m + n >i 1) depend on the functions ~k(x)( l  = 1, 2) determined from the 
previous systems (the constants E~ and E~ occur in them linearly). 

The real integral equations (2.7) can be represented in the form of a single complex equation 
(Ixl ~< 1) 

_, (2.8) 

= mn + Q ( 2 )  D,,m 1 Q"" -(In~,+a°))Pl" '  + ~ o o P ~  +i[~EcooPi  m" -(In/,, oo )'2 , 

- i-~'"(x), f "n  (x) = = 9""(x)-q~;""(x)+ ¢_ ff '"(x)+if~"n(x),  A l l n  i - e  
2~ I + e  

It can be proved that, if the Poisson's ratios of the elastic bodies ~ ~ (0, 1/2](n = 1, 2), then the constant 
e E ( -  1/2, 1/2). Differentiating both sides of Eq. (2.8) with respect tox, we will have the integral equation 
(Ixl ~< 1) 

-""'C) 
~ - '-qx d~ + i Tt th( rrA )tp "'" ( x ) = nI f ' "  ( x ) ]" (2.9) 

the solution of which is known in dosed  form [1, 12] 
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~P'" (x) = ch(~A) [ P"" - ch(r~A} " ~ ) ] x ~  L ! "t[f'" "S(~) d~] 2 sh(2nA)[ f"'(x), " +  " . (2.10) 

S(x) = (I + X)~+iA(I -- X) ~-iA , P .... = P("" + iP~'' 

TO determine t]ae complex constant pro,,, we multiply both sides of Eq. (2.8) by Sl (x )  = 
(1 + x) l /2- / / l (1  -- x) t/z+/A and integrate them with respect tox in the range from - 1  to 1. Using relations 
(1.23) and (1.24) from [1], we obtain the linear equation 

I t'mn IX ~ 
B P ' " " - Q " " ' = c h ( n A ) ~ "  ' " d r  (2.11) 

-1 Si ( x )  

B = - I n 2 - C - ~ ( ~ + i A ) - ~ ( ~ - i A )  

where ~(x) is the psi function and C is Euler's constant. Separating the real and imaginary parts in (2.11), 
we obtain that the determinant of the system of equations in P~" and P~" is equal to 

1 2 D = ( I n  ~ + a ~  ~ + B)(In £ + a ~  ) + B) - ~ (r~EC0o) (2.12) 

The problem of :investigating the zeros of this determinant in the IX, h plane reduces to solving the 
quadratic equation for in h. Numerical analysis carried out for various pairs of elastic materials indicates 
that in practical situations the roots of the equation D = 0 lie outside the region 12. 

Note that the series of integrals, including singular integrals containing the functions S(x)  and Sl (x)  
encountered in fonxtulae (2.10) and (2.11), is calculated by means of formulae (1.6) and (1.7) [13]. In 
particular (1~1) -< 1) 

i xdx  = - i  2rtA i S ( x ) d x _  igth(nA)S(~) x(~+i2A) (2.13) 
_iS(x) ch(rr.A)' -i x - ~  ch(~A) 

Below we will give the first few terms of expansions (2.6). In zero the approximation 

= -7oo J,c.c.)a. 

cpOOfx ) = ch(~.A) pOO 
xS(x) 

D . ¢3-t> ET)+~rteCoo(ffo_t +E3_I) ] Pt tX> = [(In ~. ~- a0o + B)(ft °° + * 

(2.14) 

For the first approximation 

jim (x) = -amCt)'trtr tnoo + 2AP3~_t,._ 1_cl oc3-/).~rtr3_t,-,00 _ 2A ptoo ) + 

' + X r r m  ! +'1 --~--tat + Et + 2(rtalt)Pt °° " (t,-0o 

al° I-lsao o t l  t )  t i t )  

,,, ( x / I : )  m = L2_ (u)J2_ t R t du 
l.tao o 

*to o u~t  u J ~, la ) 

(2.15) 

0 = ( -I)l-I.  RtCx) = ~ J t - i  ( x ) -  xJ2_t(x)  
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Table 1 

Case Steel on brass Brass on steel 

g 2 3 4 2 3 

a~x) 1.500 1.655 1.748 1.397 1.579 1.688 

a(~} 9 x 105 -6107 3013 5724 -1168 907 4750 

cot} -3.525 - 1.262 -0.3324 2.375 1.841 1.53 I 

tdo x 105 -6433 -5601 -4712 -7611 -6558 -55.34 

a~0 x 105 5433 2127 999 7351 2995 1427 

clo x 105 2969 2391 1631 -1233 337 457 

c~} x 105 -18370 -9523 -5706 -4803 -3296 -2185 

./i <~) x 104 8418 8885 9052 3521 3801 390 I 

.f~x~ x 104 3961 2735 2076 2470 1713 1302 

.]i I0 X 10 4 5114 7363 8187 1539 2892 3385 

.f/0 × 10 4 -10860 -7902 -6101 -6686 -4928 -3818 

The  funct ion ~pt°(x) is found by means  of  fo rmulae  (2.10), (2.11) and (2.15) using integrals (2.13). 
Integrals  with a var iable  limit o f  in tegrat ion in fo rmulae  (2.15) must  be  found numerically.  

Table 1 gives values of  the constants which occur in formulae  (2.14) and (2.15), with c .  = 1 and various 
p~, for  two cases: steel  on brass and brass on steel. For  steel it was assumed  [14] that  Young 's  modulus  
E x 10 -4 = 200 kg/cm 2 and Poisson's  rat io v = 0.28 (shear  modulus  G = E/[2(1 + v)]) and for  brass 
E x 10 -4 90 kg/cm 2 and v = 0.35. 

The  required functions u(r) and w(r) are expressed in te rms of  the functions ~Ol(X) and ~2(x), according 
to relat ions (2.2), by means  of  the fo rmulae  

I " qca r qc 
u(,-) = ,  ~ [utp)pl 'dp = , . ,  ~ l ~ ( r ) ,  w(r)=jw'(p)dp=-~nl2(r), ,  

/ f i r )  = ~pflx)exp r t dx 
-I  

(2.16) 

Confining ourselves in series (2.6) to a finite number  of  terms, in accordance with the accuracy required 
we finally de t e rmine  the constants  E~ and E~ f rom the condit ions u(b) = w(b) = 0 (the condit ions 
u(a) = w(a) = 0 on the basis of  the fo rmulae  (2.16) are a l ready satisfied). F r o m  the fo rmulae  (2.16) 
we obtain  a system of  l inear algebraic equat ions  for  E1 and E2: 

J ( I+x'~ 
I tp/(x)cxp 'i - - ~ - ) d x  = 0, l = 1,2 (2.17/ 
-1 

Oscillations of  the functions tpt(x)(l = 1, 2) in the ne ighbourhood  of  the points  x = __+ 1 [see (2.10)] 
lead to oscillation of  the funct ions u(r) and w(r) in the ne ighbourhood  of  the  contours  r = a + 0 and 
r = b - 0, and also to oscillation of  the stresses cr z and "rrz in the ne ighbourhood  of  the contours  
r = a - 0 a n d r  = b + 0. 

3. T H E  C O N D I T I O N S  F O R  D E T E R M I N I N G  T H E  D I M E N S I O N S  O F  T H E  
A N N U L A R  C R A C K  

After  the system of  integral  equat ions  (1.6) has been  solved, and the asymptot ic  forms  of  the stresses 
in the layer and half-space with respect  to r in the ne ighbourhood  of  the contours  r = a - 0 and 
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r = b + 0, have been constructed the problem of determining the internal radius a and the external 
radius b of  the annular crack as a function of the load q(r) can be solved in the following way. 

We will assume that the zones of oscillation of the stresses (rz and -r=, like the zones of oscillation of 
the displacements u (r) and w(r), are relatively small, i.e. the maximum width of the zones of  oscillation 
80 ~ b - a. This, for example, should occur when the substrate (half-space) is considerably stiffer than 
the coating (layer) or vice versa (see ttfe estimate of the width of the zones of oscillation in Section 
l14a in [15]). 

Note  that between the layer (coating) and half-space (substrate) there is always a transition zone 
[16] - a transition layer of thickness 8 ~ h (usually several micrometres),  more brittle than the main 
materials, with the elastic characteristics G3 and ~3 [E3 = 2G3(1 + ~ ) ]  which can be obtained by a certain 
averaging of G1, G~: and vl, ~ ,  Likewise, let 8 > 80. 

Since the crack was formed on the boundary z = 0 due to the inadequate strength of the given 
transition layer, it i,; highly probable that, when the load q(r) increases, the crack will then spread into 
the plane of minimum resistance z = 0. By virtue of this, to determine the values of  a and b it is possible, 
for example, to use the following additional conditions when z = 0 

I I ,+8 
I '; -g [ Udr = A, ( 3 . 1 )  - g . ! s U d r =  A.,  

which are certain analogues of Novozhilov's integral criterion of fracture [2]. Here,  U is the elastic energy 
per  unit volume of the transition layer, namely 

I ,,~ ~ , , , , I 2 
U = 2E3 [(~,.- + ~ 2  +(~._ _ 2V3((~,.(~ ° + (~(~ +(~(~. )1+ ,¢~. 

.. ~ 2G 3 
" * - I z , ~ l )  _ ( 2 ) ,  ( 3 . 2 )  

1~. =(~!1) =(~(2), 17,.. ='[(I) +17(2) 

and A* is the experimentally determined physical constant of the pair of materials (the critical value 
of elastic energy per unit volume of the transition layer). The specific use of  the criterion (3.1) is still 
difficult in view of the lack of the necessary experimental data. 
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